• Users Online: 202
  • Print this page
  • Email this page
REVIEW
Year : 2021  |  Volume : 4  |  Issue : 4  |  Page : 85-91

Pediatric posterior fossa ependymoma and metabolism: A narrative review


1 Department of Neurological Surgery, University of Pittsburgh School of Medicine; John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh; Division of Pediatrics, Department of Hematology Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA; Division of Pediatrics, Department of Hematology Oncology, Albany Medical Center, Albany, NY, USA
2 Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
3 Division of Pediatrics, Department of Hematology Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
4 The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children; Department of Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
5 The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children; Department of Developmental and Stem Cell Biology Program, The Hospital for Sick Children; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
6 Department of Neurological Surgery, University of Pittsburgh School of Medicine; John G. Rangos Sr. Research Center, Children's Hospital of Pittsburgh; Division of Pediatrics, Department of Hematology Oncology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA

Correspondence Address:
Dr. Sameer Agnihotri
John G. Rangos Sr. Research Center, UPMC Children's Hospital and University of Pittsburgh, 4401 Penn Avenue, PA 15224
USA
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/glioma.glioma_17_21

Rights and Permissions

Ependymomas are a lethal central nervous system (CNS) tumor found in both adults and children. Recent efforts have focused on risk stratification by classifying the molecular variants of CNS ependymoma. Despite this increased knowledge of molecular drivers, much less is known about the metabolism of these subgroups. Disruption of cellular metabolism can drive the transition of normal neuronal cells to tumor cells. A shift from anaerobic to aerobic metabolism as the primary energy source is a hallmark of cancer, promoting cancer cell proliferation, and avoidance of cellular apoptotic cues. This review aims to discuss the current knowledge regarding metabolism in ependymoma cells compared to normal brain cells and the implications of metabolic changes with regard to tumorigenesis, the tumor microenvironment, and possible targets for treatment.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2424    
    Printed60    
    Emailed0    
    PDF Downloaded147    
    Comments [Add]    

Recommend this journal