Close
  Indian J Med Microbiol
 

Figure 2: Metabolic regulation of the ependymoma epigenome. A hypoxic microenvironment is essential for propagation and growth of posterior fossa A ependymoma (PF-EPN-A) ependymoma. Hypoxia is a key regulator of several metabolic intermediates that maintain the H3K27 hypomethylated state, which is a key feature of PF-EPN-A ependymoma. These metabolic alterations result in S-adenosylmethionine sequestration (reducing H3K27 methylation), increased glycolysis and increased reductive carboxylation (increasing H3K27 acetylation), and increased glutaminolysis (to support active DNA and histone demethylases). EPOP: Elongin BC and polycomb repressive complex 2 associated protein, EZHIP: EZH2 inhibitory protein, SAH: S-adenosylhomocysteine

Figure 2: Metabolic regulation of the ependymoma epigenome. A hypoxic microenvironment is essential for propagation and growth of posterior fossa A ependymoma (PF-EPN-A) ependymoma. Hypoxia is a key regulator of several metabolic intermediates that maintain the H3K27 hypomethylated state, which is a key feature of PF-EPN-A ependymoma. These metabolic alterations result in S-adenosylmethionine sequestration (reducing H3K27 methylation), increased glycolysis and increased reductive carboxylation (increasing H3K27 acetylation), and increased glutaminolysis (to support active DNA and histone demethylases). EPOP: Elongin BC and polycomb repressive complex 2 associated protein, EZHIP: EZH2 inhibitory protein, SAH: S-adenosylhomocysteine